Sol–Gel-Processed Y2O3–Al2O3 Mixed Oxide-Based Resistive Random-Access-Memory Devices

Author:

Kim Hae-In1,Lee Taehun1,Cho Yoonjin1,Lee Sangwoo1,Lee Won-Yong12ORCID,Kim Kwangeun3ORCID,Jang Jaewon1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

2. The Institute of Electronic Technology, Kyungpook National University, Daegu 41566, Republic of Korea

3. School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea

Abstract

Herein, sol–gel-processed Y2O3–Al2O3 mixed oxide-based resistive random-access-memory (RRAM) devices with different proportions of the involved Y2O3 and Al2O3 precursors were fabricated on indium tin oxide/glass substrates. The corresponding structural, chemical, and electrical properties were investigated. The fabricated devices exhibited conventional bipolar RRAM characteristics without requiring a high-voltage forming process. With an increase in the percentage of Al2O3 precursor above 50 mol%, the crystallinity reduced, with the amorphous phase increasing owing to internal stress. Moreover, with increasing Al2O3 percentage, the lattice oxygen percentage increased and the oxygen vacancy percentage decreased. A 50% Y2O3–50% Al2O3 mixed oxide-based RRAM device exhibited the maximum high-resistance-state/low-resistance-state (HRS/LRS) ratio, as required for a large readout margin and array size. Additionally, this device demonstrated good endurance characteristics, maintaining stability for approximately 100 cycles with a high HRS/LRS ratio (>104). The HRS and LRS resistances were also retained up to 104 s without considerable degradation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3