Cold Cathodes with Two-Dimensional van der Waals Materials

Author:

Chen Yicong1ORCID,Chen Jun1ORCID,Li Zhibing2ORCID

Affiliation:

1. State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technologies, Sun Yat-Sen University, Guangzhou 510275, China

2. State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Science, Sun Yat-Sen University, Shenzhen 518000, China

Abstract

Two-dimensional van der Waals materials could be used as electron emitters alone or stacked in a heterostructure. Many significant phenomena of two-dimensional van der Waals field emitters have been observed and predicted since the landmark discovery of graphene. Due to the wide variety of heterostructures that integrate an atomic monolayer or multilayers with insulator nanofilms or metallic cathodes by van der Waals force, the diversity of van der Waals materials is large to be chosen from, which are appealing for further investigation. Until now, increasing the efficiency, stability, and uniformity in electron emission of cold cathodes with two-dimensional materials is still of interest in research. Some novel behaviors in electron emission, such as coherence and directionality, have been revealed by the theoretical study down to the atomic scale and could lead to innovative applications. Although intensive emission in the direction normal to two-dimensional emitters has been observed in experiments, the theoretical mechanism is still incomplete. In this paper, we will review some late progresses related to the cold cathodes with two-dimensional van der Waals materials, both in experiments and in the theoretical study, emphasizing the phenomena which are absent in the conventional cold cathodes. The review will cover the fabrication of several kinds of emitter structures for field emission applications, the state of the art of their field emission properties and the existing field emission model. In the end, some perspectives on their future research trend will also be given.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Department of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3