Biomass-Derived Carbon Aerogels for ORR/OER Bifunctional Oxygen Electrodes

Author:

Jiao Yue1,Xu Ke1,Xiao Huining2,Mei Changtong1ORCID,Li Jian3

Affiliation:

1. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources—International Innovation Center for Forest Chemicals and Materials, Joint International Research Laboratory of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

2. Chemical Engineering Department, New Brunswick University, Fredericton, NB E3B 5A3, Canada

3. Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China

Abstract

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial electrochemical reactions that play vital roles in energy conversion and storage technologies, such as fuel cells and metal–air batteries. Typically, noble-metal-based catalysts are required to enhance the sluggish kinetics of the ORR and OER, but their high costs restrict their practical commercial applications. Thus, highly active and strong non-noble metal catalysts are essential to address the cost and durability challenge. Based on previous research, carbon-based catalysts may present the best alternatives to these precious metals in the future owing to their affordability, very large surface areas, and superior mechanical and electrical qualities. In particular, carbon aerogels prepared using biomass as the precursors are referred to as biomass-derived carbon aerogels. They have sparked broad attention and demonstrated remarkable performance in the energy conversion and storage sectors as they are ecologically beneficial, affordable, and have an abundance of precursors. Therefore, this review focuses on various nanostructured materials based on biomass-derived carbon aerogels as ORR/OER catalysts, including metal atoms, metal compounds, and alloys.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Scientific Research Start-up Funds of Nanjing Forestry University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3