Development of Novel Electrospun Fibers Based on Cyclic Olefin Polymer

Author:

Sabzekar Malihe12,Pourafshari Chenar Mahdi1,Khayet Mohamed2ORCID,García-Payo Carmen2ORCID,Mortazavi Seyed Mohammadmahdi3,Golmohammadi Morteza4ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran

2. Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, University Complutense of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain

3. Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965/115, Iran

4. Department of Chemical Engineering, Birjand University of Technology, Birjand 9719866981, Iran

Abstract

For the first time, a systematic study to investigate the electrospinnability of cyclic olefin polymer (COP) was performed. Different solvents and mixtures were tested together with different electrospinning parameters and post-treatment types to prepare bead-free fibers without defects. These were successfully obtained using a chloroform/chlorobenzene (40/60 wt.%) solvent mixture with a 15 wt.% COP polymer, a 1 mL/h polymer solution flow rate, a 15 cm distance between the needle and collector, and a 12 kV electric voltage. COP fibers were in the micron range and the hot-press post-treatment (5 MPa, 5 min and 120 °C) induced an integrated fibrous structure along with more junctions between fibers, reducing the mean and maximum inter-fiber space. When the temperature of the press post-treatment was increased (from 25 °C to 120 °C), better strength and less elongation at break of COP fibers were achieved. However, when applying a temperature above the COP glass temperature (Tg = 138 °C) the fibers coalesced, showing a mechanical behavior similar to a plastic film and a low elongation at break with a high strength. The addition of a high dielectric constant non-solvent, N,N-dimethylacetamide (DMAc), resulted in a considerable reduction in the COP fiber diameter. Based on the cloud point approach, it was found that the use of DMAc and the solvent chloroform or chlorobenzene improved the electrospinnability of COP polymer solution.

Funder

Spanish Ministry of Science, Innovation and Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3