Effect of Exposure Concentration and Growth Conditions on the Association of Cerium Oxide Nanoparticles with Green Algae

Author:

Mackevica Aiga1,Hendriks Lyndsey2,Meili-Borovinskaya Olga2,Baun Anders1ORCID,Skjolding Lars Michael1

Affiliation:

1. Department of Environmental and Resource Technology, Technical University of Denmark, Building 115, DK-2800 Kgs. Lyngby, Denmark

2. TOFWERK, Schorenstrasse 39, 3645 Thun, Switzerland

Abstract

The increasing release of engineered nanoparticles (NPs) into aquatic ecosystems makes it crucial to understand the interactions of NPs with aquatic organisms, such as algae. In this study, the association of CeO2 NPs with unicellular algae (Raphidocelis subcapitata) and changes to the cellular elemental profile were investigated using three exposure concentrations (1, 50, and 1000 µg CeO2/L) at two different algal growth conditions—exponential and inhibited growth (1% glutaraldehyde). After a 24 h-exposure, algal suspensions were settled by gravity and CeO2-NP/algae association was analyzed by single-cell inductively coupled plasma quadrupole mass spectrometry (sc-ICP-QMS) and ICP time-of-flight MS (sc-ICP-TOFMS). Concurrent detection of the cellular fingerprint with cerium indicated NP association with algae (adsorption/uptake) and changes in the cellular elemental profiles. Less than 5% of cells were associated with NPs when exposed to 1 µg/L. For 50 µg/L exposures in growing and inhibited cell treatments, 4% and 16% of cells were associated with CeO2 NPs, respectively. ICP-TOFMS analysis made it possible to exclude cellular exudates associated with CeO2 NPs due to the cellular fingerprint. Growing and inhibited cells had different elemental profile changes following exposure to CeO2 NPs—e.g., growing cells had higher Mg and lower P contents independent of CeO2 concentration compared to inhibited cells.

Funder

Advanced Tools for NanoSafety Testing

HARMLESS project

Swedish Foundation for Strategic Environmental Research

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3