Synchronization Induced by Layer Mismatch in Multiplex Networks

Author:

Anwar Md Sayeed1ORCID,Rakshit Sarbendu2,Kurths Jürgen34ORCID,Ghosh Dibakar1ORCID

Affiliation:

1. Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India

2. Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA

3. Potsdam Institute for Climate Impact Research, Telegraphenberg A 31, 14473 Potsdam, Germany

4. Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany

Abstract

Heterogeneity among interacting units plays an important role in numerous biological and man-made complex systems. While the impacts of heterogeneity on synchronization, in terms of structural mismatch of the layers in multiplex networks, has been studied thoroughly, its influence on intralayer synchronization, in terms of parameter mismatch among the layers, has not been adequately investigated. Here, we study the intralayer synchrony in multiplex networks, where the layers are different from one other, due to parameter mismatch in their local dynamics. In such a multiplex network, the intralayer coupling strength for the emergence of intralayer synchronization decreases upon the introduction of impurity among the layers, which is caused by a parameter mismatch in their local dynamics. Furthermore, the area of occurrence of intralayer synchronization also widens with increasing mismatch. We analytically derive a condition under which the intralayer synchronous solution exists, and we even sustain its stability. We also prove that, in spite of the mismatch among the layers, all the layers of the multiplex network synchronize simultaneously. Our results indicate that a multiplex network with mismatched layers can induce synchrony more easily than a multiplex network with identical layers.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3