EnRDeA U-Net Deep Learning of Semantic Segmentation on Intricate Noise Roads

Author:

Yu Xiaodong1,Kuan Ta-Wen1,Tseng Shih-Pang12,Chen Ying1,Chen Shuo3,Wang Jhing-Fa1,Gu Yuhang1,Chen Tuoli1

Affiliation:

1. School of Information Science and Technology, Sanda University, No. 2727 Jinhai Road, Shanghai Pudong District, Shanghai 201209, China

2. School of Software and Big Data, Changzhou College of Information Technology, Changzhou 213164, China

3. Jiangsu Zero-Carbon Energy-Saving and Environmental Protection Technology, Yangzhou 225000, China

Abstract

Road segmentation is beneficial to build a vision-controllable mission-oriented self-driving bot, e.g., the Self-Driving Sweeping Bot, or SDSB, for working in restricted areas. Using road segmentation, the bot itself and physical facilities may be protected and the sweeping efficiency of the SDSB promoted. However, roads in the real world are generally exposed to intricate noise conditions as a result of changing weather and climate effects; these include sunshine spots, shadowing caused by trees or physical facilities, traffic obstacles and signs, and cracks or sealing signs resulting from long-term road usage, as well as different types of road materials, such as cement or asphalt; all of these factors greatly influence the effectiveness of road segmentation. In this work, we investigate the extension of Primordial U-Net by the proposed EnRDeA U-Net, which uses an input channel applying a Residual U-Net block as an encoder and an attention gate in the output channel as a decoder, to validate a dataset of intricate road noises. In addition, we carry out a detailed analysis of the nets’ features and segmentation performance to validate the intricate noises dataset on three U-Net extensions, i.e., the Primordial U-Net, Residual U-Net, and EnRDeA U-Net. Finally, the nets’ structures, parameters, training losses, performance indexes, etc., are presented and discussed in the experimental results.

Funder

Sanda University

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3