Assessment of Ponderosa Pine Vigor Using Four-Band Aerial Imagery in South Central Oregon: Crown Objects to Landscapes

Author:

Schrader-Patton CharlieORCID,Grulke NancyORCID,Bienz CraigORCID

Abstract

Ponderosa pine is an integral part of the forested landscape in the western US; it is the dominant tree species on landscapes that provide critical ecosystem services. Moderate drought tolerance allows it to occupy the transition zone between forests, open woodlands, and grasslands. Increases in stand density resulting from wildfire suppression, combined with lengthening, intensifying, and more frequent droughts have resulted in reduced tree vigor and stand health in dry ponderosa pine throughout its range. To address a management need for efficient landscape-level surveys of forest health, we used Random Forests to develop an object-oriented classification of individual tree crowns (ITCs) into vigor classes using existing, agency-acquired four-band aerial imagery. Classes of tree vigor were based on quantitative physiological and morphological attributes established in a previous study. We applied our model across a landscape dominated by ponderosa pine with a variety of forest treatments to assess their impacts on tree vigor and stand health. We found that stands that were both thinned and burned had the lowest proportion of low-vigor ITCs, and that stands treated before the 2014–2016 drought had lower proportions of low-vigor ITCs than stands treated more recently (2016). Upland stands had significantly higher proportions of low-vigor trees than lowland stands. Maps identifying the low-vigor ITCs would assist managers in identifying priority stands for treatment and marking trees for harvest or retention. These maps can be created using already available imagery and GIS software.

Publisher

MDPI AG

Subject

Forestry

Reference66 articles.

1. Landscape dynamics of the Basin;Hann,1997

2. Forested Plant Associations of the Oregon East Cascades;Simpson,2007

3. Forest Resource Facts and Historical Trends. FS-1035 2014;Oswalt,2014

4. Impacts of growing‐season climate on tree growth and post‐fire regeneration in ponderosa pine and Douglas‐fir forests

5. Plasticity in physiological traits in conifers: Implications for response to climate change in the western U.S.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3