Assessing the Leaf Blade Nutrient Status of Pinot Noir Using Hyperspectral Reflectance and Machine Learning Models

Author:

Lyu Hongyi1ORCID,Grafton Miles1ORCID,Ramilan Thiagarajah1ORCID,Irwin Matthew1,Sandoval Eduardo2ORCID

Affiliation:

1. School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand

2. Massey Agri-Food (MAF) Digital Lab., Massey University, Palmerston North 4410, New Zealand

Abstract

Monitoring grape nutrient status, from flowering to veraison, is important for viticulturists when implementing vineyard management strategies, in order to produce quality wines. However, traditional methods for measuring nutrient elements incur high labour costs. The aim of this study is to explore the potential of predicting grapevine leaf blade nutrient concentration based on hyperspectral data. Leaf blades were collected at two Pinot Noir commercial vineyards at Martinborough, New Zealand. The leaf blade spectral data were obtained with a handheld spectroradiometer, to evaluate surface reflectance and derivative spectra in the spectrum range between 400 and 2400 nm. Afterwards, leaf blades nutrient concentrations (N, P, K, Ca, and Mg) were measured, and their relationships with the hyperspectral data were modelled by machine learning models; partial least squares regression (PLSR), random forest regression (RFR), and support vector regression (SVR) were used. Pearson correlation and recursive feature elimination, based on cross-validation, were used as feature selection methods for RFR and SVR, to improve the model’s performance. The variable importance score of PLSR, and permutation variable importance of RFR and SVR, were used to determine the most sensitive wavelengths, or spectral regions related to each biochemical variable. The results showed that the best predictive performance for leaf blade N concentration was based on PLSR to raw reflectance data (R2 = 0.66; RMSE = 0.15%). The combination of support vector regression with the Pearson correlation selected method and second derivative reflectance provided a high accuracy for K and Ca modelling (R2 = 0.7; RMSE = 0.06%; R2 = 0.62; RMSE = 0.11%, respectively). However, the modelling performance for P and Mg, by different feature groups and variable selection methods, was poor (R2 = 0.15; RMSE = 0.02%; R2 = 0.43; RMSE = 0.43%, respectively). Thus, a larger dataset is needed for improving the prediction of P and Mg. The results indicated that for Pinot Noir leaf blades, raw reflectance data had potential for the prediction of N concentration, while the second-derivative spectra were more suitable to predict K and Ca. This study led to the provision of rapid and non-destructive measurements of grapevine leaf nutrient status.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3