Reconstructing 34 Years of Fire History in the Wet, Subtropical Vegetation of Hong Kong Using Landsat

Author:

Chan Aland H. Y.1ORCID,Guizar-Coutiño Alejandro12ORCID,Kalamandeen Michelle13ORCID,Coomes David A.1

Affiliation:

1. Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK

2. UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), 219 Huntingdon Road, Cambridge CB3 0DL, UK

3. School of Earth, Environment and Society, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada

Abstract

Burn-area products from remote sensing provide the backbone for research in fire ecology, management, and modelling. Landsat imagery could be used to create an accurate burn-area map time series at ecologically relevant spatial resolutions. However, the low temporal resolution of Landsat has limited its development in wet tropical and subtropical regions due to high cloud cover and rapid burn-area revegetation. Here, we describe a 34-year Landsat-based burn-area product for wet, subtropical Hong Kong. We overcame technical obstacles by adopting a new LTS fire burn-area detection pipeline that (1) Automatically uniformized Landsat scenes by weighted histogram matching; (2) Estimated pixel resemblance to burn areas based on a random forest model trained on the number of days between the fire event and the date of burn-area detection; (3) Iteratively merged features created by thresholding burn-area resemblance to generate burn-area polygons with detection dates; and (4) Estimated the burn severity of burn-area pixels using a time-series compatible approach. When validated with government fire records, we found that the LTS fire product carried a low area of omission (11%) compared with existing burn-area products, such as GABAM (49%), MCD64A1 (72%), and FireCCI51 (96%) while effectively controlling commission errors. Temporally, the LTS fire pipeline dated 76.9% of burn-area polygons within two months of the actual fire event. The product represents the first Landsat-based burn-area product in wet tropical and subtropical Asia that covers the entire time series. We believe that burn-area products generated from algorithms like LTS fire will effectively bridge the gap between remote sensing and field-based studies on wet tropical and subtropical fire ecology.

Funder

Bill & Melinda Gates Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3