Spatial Correlations of Land Use Carbon Emissions in Shandong Peninsula Urban Agglomeration: A Perspective from City Level Using Remote Sensing Data

Author:

Zhao Lin1,Yang Chuan-hao1,Zhao Yu-chen1,Wang Qian12,Zhang Qi-peng1

Affiliation:

1. School of Geography and Environment, Liaocheng University, Liaocheng 252059, China

2. Institute of Huanghe Studies, Liaocheng University, Liaocheng 252059, China

Abstract

The spatial and temporal characteristics of land use carbon emissions are relevant to the sustainable use of land resources. Although spatial and temporal studies have been conducted on land use carbon emissions, the spatial correlation of land use carbon emissions at the city level still requires further research. Here, we estimated the distribution of carbon emissions at the city level in Shandong Peninsula urban agglomeration in spatial and temporal terms based on land use remote sensing data and fossil energy consumption data during 2000–2019. The results showed that the land use change in the 16 cities in the study area was the conversion of cropland to construction land. Carbon emissions from land use had an upward trend for all 16 cities overall during the period of 2000–2019, but the incremental carbon emissions trended downward after 2010. Among them, Jinan and Qingdao had higher carbon emissions than other cities. In addition, we also found that land use carbon emissions at the city level were characterized by stochasticity, while per capita carbon emissions displayed geospatial aggregation. Among them, Yantai displayed a spatial pattern of high–high clustering of carbon emissions, while Jining presented a spatial pattern of low–low clustering in terms of land-average carbon emissions and carbon emissions per capita during 2000–2019. The results of the study are important for guiding the achievement of urban carbon emission reduction and carbon neutrality targets at the city level.

Funder

The Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3