Abstract
Process intensification of catalytic fixed-bed reactors is of vital interest and can be conducted on different length scales, ranging from the molecular scale to the pellet scale to the plant scale. Particle-resolved computational fluid dynamics (CFD) is used to characterize different reactor designs regarding optimized heat transport characteristics on the pellet scale. Packings of cylinders, Raschig rings, four-hole cylinders, and spheres were investigated regarding their impact on bed morphology, fluid dynamics, and heat transport, whereby for the latter particle shape, the influence of macroscopic wall structures on the radial heat transport was also studied. Key performance indicators such as the global heat transfer coefficient and the specific pressure drop were evaluated to compare the thermal performance of the different designs. For plant-scale intensification, effective transport parameters that are needed for simplified pseudo-homogeneous two-dimensional plug flow models were determined from the CFD results, and the accuracy of the simplified modeling approach was judged.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献