Kinetic Regularities of Methane Dry Reforming Reaction on Nickel-Containing Modified Ceria–Zirconia

Author:

Fedorova Valeria,Simonov MikhailORCID,Valeev Konstantin,Bespalko YuliyaORCID,Smal EkaterinaORCID,Eremeev Nikita,Sadovskaya Ekaterina,Krieger Tamara,Ishchenko Arcady,Sadykov VladislavORCID

Abstract

The Ni-containing catalysts based on ceria–zirconia doped with Ti and Ti+Nb were prepared by the solvothermal method in supercritical fluids. Ni deposition was carried out by incipient wetness impregnation and the one-pot technique. All materials were investigated by a complex of physicochemical methods (XRD, BET, TEM, H2-TPR). Samples catalytic properties were studied in methane dry reforming in the plug-flow reactor. Conversions of CH4 and CO2, H2/CO ratio, and CO and H2 yields were measured, and detailed kinetics analysis was carried out. The influence of Ni loading method and support modification on the catalytic behavior in the methane dry reforming process was studied. The preparation method of catalysts affects the textural characteristics. For one-pot samples, pore volume and surface area are lower than for impregnated samples. For catalysts on modified supports, strong metal–support interaction was shown to increase catalytic activity. A reduction pretreatment of samples was shown to have significant influence on their catalytic properties. The kinetic parameters such as reaction rate constant at 700 °C, effective activation energy, and TOF were estimated and analyzed.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3