ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation

Author:

Mandal AdhirathORCID,Cho Haengmuk,Chauhan Bhupendra Singh

Abstract

Compression ignition (CI) engines are popular in the transport sector because of their high compression ratio. However, in recent years, it has become a major concern from an environmental point of view because of the emission and depleting fossil fuel. The advanced combustion concept has been a popular research topic in the CI engine. Low-temperature combustion with alternate fuel has helped in reducing the oxides of nitrogen (NOx) and soot emission of the engine. Biogas is a popular substitute of energy especially deduced from biomass because of its clean combustion properties, as well it being a renewable energy source compared to non-renewable diesel resources. In experiments with dual fuel, i.e., conventional diesel and alternate fuel (biogas) were carried out through them. In the present study, an artificial neural network model was used to estimate emissions and check the attributes of performance. Different algorithms and training functions were used to train the models. However, the best training algorithm was Levenberge Marquardt and the training function was Tansig (Hyperbolic tangent sigmoid) and Logsig (logarithmic sigmoid), which showed the best result with regression coefficient (R > 0.98) and Mean square error (MSE < 0.001). The best model was trained by evaluating MSE and regression coefficient. Experimental results and artificial neural network (ANN) prediction showed that the experimental results were similar to each other and lie at the same intervals. The ANN model helped in predicting experimental data that were earlier difficult to experimentally perform using interpolation and extrapolations. It was observed that there was an increase in Brake Specific Energy Consumption (BSEC) and a decrease in Brake thermal efficiency (BTE) with improved biogas flow rate and reduced NOx emission in the combustion chamber. Carbon monoxide (CO) and hydrocarbon (HC) emissions increase linearly with the increase in biogas flow rate, whereas smoke opacity decreases. It could be concluded that this study helps in understanding the effect of dual fuel (diesel-biogas) combustion under different load conditions of the engine with the help of ANN, which could be a substitute fuel and help to protect the environment.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3