Investigating the Potential Use of RADARSAT-2 and UAS imagery for Monitoring the Restoration of Peatlands

Author:

White LoriORCID,McGovern Mark,Hayne Shari,Touzi Ridha,Pasher Jon,Duffe Jason

Abstract

The restoration of peatlands is critical to help reduce the effects of climate change and further prevent the loss of habitat for many species of flora and fauna. The objective of this research was to evaluate RADARSAT-2 satellite imagery and high-resolution Unmanned Aerial Systems (UASs) to determine if they could be used as surrogates for monitoring the success of peatland restoration. Areas of peatland that were being actively harvested, had been restored from past years (1994–2003), and natural shrub bog in Lac St. Jean, Quebec were used as a test case. We compared the Freeman–Durden and Touzi decompositions by applying the Bhattacharyya Distance (BD) statistic to see if the spectral signatures of restored peatland could be separated from harvested peat and natural shrub bog. We flew Unmanned Aerial Surveys (UASs) over the study site to identify Sphagnum and Polytrichum strictum, two indicator species of early peatland restoration success. Results showed that the Touzi decomposition was better able to separate the spectral signatures of harvested, restored, and natural shrub bog (BD values closer to 9). Symmetric scattering type αs1, Helicity |τ1,2,3|, a steep incidence angle, and peak growing season appear to be important for separating the spectral signatures. We had moderate success in detecting Sphagnum and Polytrichum strictum visually by using texture and pattern but were unable to use colour due to differences in sun angle and clouds during the UAS flights. Results suggest that RADARSAT-2 data using the Touzi decomposition and UAS imagery show potential for monitoring peatland restoration success over time.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference84 articles.

1. Preliminary Estimate of the Mineral Production of Canada, by Provincehttps://sead.nrcan–rncan.gc.ca/prod–prod/Prelim–data–en.aspx?FileT=1&FileYr=2017&Lang=en

2. HYDROLOGY AND MICROCLIMATE OF A PARTLY RESTORED CUTOVER BOG, QUÉBEC

3. Climate Change 2013 The Physical Science Basishttp://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3