A Method to Detect and Track Moving Airplanes from a Satellite Video

Author:

Shi FanORCID,Qiu FangORCID,Li Xiao,Tang Yunwei,Zhong Ruofei,Yang Cankun

Abstract

In recent years, satellites capable of capturing videos have been developed and launched to provide high definition satellite videos that enable applications far beyond the capabilities of remotely sensed imagery. Moving object detection and moving object tracking are among the most essential and challenging tasks, but existing studies have mainly focused on vehicles. To accurately detect and then track more complex moving objects, specifically airplanes, we need to address the challenges posed by the new data. First, slow-moving airplanes may cause foreground aperture problem during detection. Second, various disturbances, especially parallax motion, may cause false detection. Third, airplanes may perform complex motions, which requires a rotation-invariant and scale-invariant tracking algorithm. To tackle these difficulties, we first develop an Improved Gaussian-based Background Subtractor (IPGBBS) algorithm for moving airplane detection. This algorithm adopts a novel strategy for background and foreground adaptation, which can effectively deal with the foreground aperture problem. Then, the detected moving airplanes are tracked by a Primary Scale Invariant Feature Transform (P-SIFT) keypoint matching algorithm. The P-SIFT keypoint of an airplane exhibits high distinctiveness and repeatability. More importantly, it provides a highly rotation-invariant and scale-invariant feature vector that can be used in the matching process to determine the new locations of the airplane in the frame sequence. The method was tested on a satellite video with eight moving airplanes. Compared with state-of-the-art algorithms, our IPGBBS algorithm achieved the best detection accuracy with the highest F1 score of 0.94 and also demonstrated its superiority on parallax motion suppression. The P-SIFT keypoint matching algorithm could successfully track seven out of the eight airplanes. Based on the tracking results, movement trajectories of the airplanes and their dynamic properties were also estimated.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Siamese Multi-Scale Adaptive Search Network for Remote Sensing Single-Object Tracking;Remote Sensing;2023-09-04

2. Detection and Tracking Various Objects in Video Images;2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA);2023-07-10

3. Implementation of Real-Time Space Target Detection and Tracking Algorithm for Space-Based Surveillance;Remote Sensing;2023-06-16

4. Aircraft Tracking Based on an Antidrift Multifilter Tracker in Satellite Video Data;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

5. Vehicle detection method for satellite videos based on enhanced vehicle features;Journal of Applied Remote Sensing;2022-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3