Hands-Free Authentication for Virtual Assistants with Trusted IoT Device and Machine Learning

Author:

Hayashi Victor TakashiORCID,Ruggiero Wilson VicenteORCID

Abstract

Virtual assistants, deployed on smartphone and smart speaker devices, enable hands-free financial transactions by voice commands. Even though these voice transactions are frictionless for end users, they are susceptible to typical attacks to authentication protocols (e.g., replay). Using traditional knowledge-based or possession-based authentication with additional invasive interactions raises users concerns regarding security and usefulness. State-of-the-art schemes for trusted devices with physical unclonable functions (PUF) have complex enrollment processes. We propose a scheme based on a challenge response protocol with a trusted Internet of Things (IoT) autonomous device for hands-free scenarios (i.e., with no additional user interaction), integrated with smart home behavior for continuous authentication. The protocol was validated with automatic formal security analysis. A proof of concept with websockets presented an average response time of 383 ms for mutual authentication using a 6-message protocol with a simple enrollment process. We performed hands-free activity recognition of a specific user, based on smart home testbed data from a 2-month period, obtaining an accuracy of 97% and a recall of 81%. Given the data minimization privacy principle, we could reduce the total number of smart home events time series from 7 to 5. When compared with existing invasive solutions, our non-invasive mechanism contributes to the efforts to enhance the usability of financial institutions’ virtual assistants, while maintaining security and privacy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Voice-based Authentication for Mission-critical Operations;2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2024-04-29

2. State-of-the-Art of Voice Assistance Technology, Mitigating Replay Attacks: A Comprehensive Discussion;2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11

3. An Investigation on Internet of Things (IoT) Technology in Smart Homes;Progress in IS;2024

4. Ecosystem of smart spaces: An overview review;Smart Spaces;2024

5. User oriented smart connected product and smart environment: a systematic literature review;The International Journal of Advanced Manufacturing Technology;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3