Hindering of Cariogenic Streptococcus mutans Biofilm by Fatty Acid Array Derived from an Endophytic Arthrographis kalrae Strain

Author:

Abdel-Aziz Marwa M.,Emam TamerORCID,Raafat Marwa M.ORCID

Abstract

Streptococcus mutans has been considered as the major etiological agent of dental caries, mostly due to its arsenal of virulence factors, including strong biofilm formation, exopolysaccharides production, and high acid production. Here, we present the antivirulence activity of fatty acids derived from the endophytic fungus Arthrographis kalrae isolated from Coriandrum sativum against Streptococcus mutans. The chemical composition of the fatty acids was analyzed by gas chromatography–mass spectrometry GC-MS and revealed nine compounds representing 99.6% of fatty acids, where unsaturated and saturated fatty acids formed 93.8% and 5.8 % respectively. Oleic and linoleic acids were the major unsaturated fatty acids. Noteworthy, the fatty acids at the concentration of 31.3 mg L–1 completely inhibited Streptococcus mutans biofilm, and water insoluble extracellular polysaccharide production in both polystyrene plates, and tooth model assay using saliva-coated hydroxyapatite discs. Inhibition of biofilm correlated significantly and positively with the inhibition of water insoluble extracellular polysaccharide (R = 1, p < 0.0001). Furthermore, Arthrographis kalrae fatty acids at a concentration of 7.8 mg L–1 exhibited acidogenesis-mitigation activity. They did not show bactericidal activity against Streptococcus mutans and cytotoxic activity against human oral fibroblast cells at the concentration used. On the other hand, saliva-coated hydroxyapatite discs treated with sub-minimum biofilm inhibitory concentration of fatty acids showed disturbed biofilm architecture with a few unequally distributed clumped matrices using fluorescence microscopy. Our findings revealed that the intracellular fatty acid arrays derived from endophytic Arthrographis kalrae could contribute to the biofilm-preventing alternatives, specifically Streptococcus mutans biofilms.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3