A Novel Approach to Using Spectral Imaging to Classify Dyes in Colored Fibers

Author:

Rahaman G. M. AtiqurORCID,Parkkinen Jussi,Hauta-Kasari Markku

Abstract

In the field of cultural heritage, applied dyes on textiles are studied to explore their great artistic and historic values. Dye analysis is essential and important to plan correct restoration, preservation and display strategy in museums and art galleries. However, most of the existing diagnostic technologies are destructive to the historical objects. In contrast to that, spectral reflectance imaging is potential as a non-destructive and spatially resolved technique. There have been hardly any studies in classification of dyes in textile fibers using spectral imaging. In this study, we show that spectral imaging with machine learning technique is capable in preliminary screening of dyes into the natural or synthetic class. At first, sparse logistic regression algorithm is applied on reflectance data of dyed fibers to determine some discriminating bands. Then support vector machine algorithm (SVM) is applied for classification considering the reflectance of the selected spectral bands. The results show nine selected bands in short wave infrared region (SWIR, 1000–2500 nm) classify dyes with 97.4% accuracy (kappa 0.94). Interestingly, the results show that fairly accurate dye classification can be achieved using the bands at 1480nm, 1640 nm, and 2330 nm. This indicates possibilities to build an inexpensive handheld screening device for field studies.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3