Impact of Missense Mutations on Spike Protein Stability and Binding Affinity in the Omicron Variant

Author:

Mahase Vidhyanand1,Sobitan Adebiyi1,Yao Qiaobin1,Shi Xinghua2,Qin Hong3ORCID,Kidane Dawit4,Tang Qiyi5ORCID,Teng Shaolei1

Affiliation:

1. Department of Biology, Howard University, Washington, DC 20059, USA

2. Department of Computer & Information Sciences, Temple University, Philadelphia, PA 19122, USA

3. Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

4. Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA

5. Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA

Abstract

The global effort to combat the COVID-19 pandemic faces ongoing uncertainty with the emergence of Variants of Concern featuring numerous mutations on the Spike (S) protein. In particular, the Omicron Variant is distinguished by 32 mutations, including 10 within its receptor-binding domain (RBD). These mutations significantly impact viral infectivity and the efficacy of vaccines and antibodies currently in use for therapeutic purposes. In our study, we employed structure-based computational saturation mutagenesis approaches to predict the effects of Omicron missense mutations on RBD stability and binding affinity, comparing them to the original Wuhan-Hu-1 strain. Our results predict that mutations such as G431W and P507W induce the most substantial destabilizations in the Wuhan-Hu-1-S/Omicron-S RBD. Notably, we postulate that mutations in the Omicron-S exhibit a higher percentage of enhancing binding affinity compared to Wuhan-S. We found that the mutations at residue positions G447, Y449, F456, F486, and S496 led to significant changes in binding affinity. In summary, our findings may shed light on the widespread prevalence of Omicron mutations in human populations. The Omicron mutations that potentially enhance their affinity for human receptors may facilitate increased viral binding and internalization in infected cells, thereby enhancing infectivity. This informs the development of new neutralizing antibodies capable of targeting Omicron’s immune-evading mutations, potentially aiding in the ongoing battle against the COVID-19 pandemic.

Funder

National Science Foundation

National Institute on Minority Health and Health Disparities of the National Institutes of Health

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3