Monitoring Wildfires in the Northeastern Peruvian Amazon Using Landsat-8 and Sentinel-2 Imagery in the GEE Platform

Author:

Barboza Castillo ElgarORCID,Turpo Cayo EfrainORCID,de Almeida CláudiaORCID,Salas López RolandoORCID,Rojas Briceño NiltonORCID,Silva López JhonsyORCID,Barrena Gurbillón MiguelORCID,Oliva Manuel,Espinoza-Villar RaulORCID

Abstract

During the latest decades, the Amazon has experienced a great loss of vegetation cover, in many cases as a direct consequence of wildfires, which became a problem at local, national, and global scales, leading to economic, social, and environmental impacts. Hence, this study is committed to developing a routine for monitoring fires in the vegetation cover relying on recent multitemporal data (2017–2019) of Landsat-8 and Sentinel-2 imagery using the cloud-based Google Earth Engine (GEE) platform. In order to assess the burnt areas (BA), spectral indices were employed, such as the Normalized Burn Ratio (NBR), Normalized Burn Ratio 2 (NBR2), and Mid-Infrared Burn Index (MIRBI). All these indices were applied for BA assessment according to appropriate thresholds. Additionally, to reduce confusion between burnt areas and other land cover classes, further indices were used, like those considering the temporal differences between pre and post-fire conditions: differential Mid-Infrared Burn Index (dMIRBI), differential Normalized Burn Ratio (dNBR), differential Normalized Burn Ratio 2 (dNBR2), and differential Near-Infrared (dNIR). The calculated BA by Sentinel-2 was larger during the three-year investigation span (16.55, 78.50, and 67.19 km2) and of greater detail (detected small areas) than the BA extracted by Landsat-8 (16.39, 6.24, and 32.93 km2). The routine for monitoring wildfires presented in this work is based on a sequence of decision rules. This enables the detection and monitoring of burnt vegetation cover and has been originally applied to an experiment in the northeastern Peruvian Amazon. The results obtained by the two satellites imagery are compared in terms of accuracy metrics and level of detail (size of BA patches). The accuracy for Landsat-8 and Sentinel-2 in 2017, 2018, and 2019 varied from 82.7–91.4% to 94.5–98.5%, respectively.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3