Scenario-Based Real-Time Flood Prediction with Logistic Regression

Author:

Lee Jaeyeong,Kim Byunghyun

Abstract

This study proposed a real-time flood extent prediction method to shorten the time it takes from the flood occurrence to an alert issuance. This method uses logistic regression to generate a flood probability discriminant for each grid constituting the study area, and then predicts the flood extent with the amount of runoff caused by rainfall. In order to generate the flood probability discriminant for each grid, a two-dimensional (2D) flood inundation model was verified by applying the Typhoon Chaba, which caused great damage to the study area in 2016. Then, 100 probability rainfall scenarios were created by combining the return period, duration, and time distribution using past observation rainfall data, and rainfall-runoff–inundation relation databases were built for each scenario by applying hydrodynamic and hydrological models. A flood probability discriminant based on logistic regression was generated for each grid by using whether the grid was flooded (1 or 0) for the runoff amount in the database. When the runoff amount is input to the generated discriminant, the flood probability on the target grid is calculated by the coefficients, so that the flood extent is quickly predicted. The proposed method predicted the flood extent in a few seconds in both cases and showed high accuracy with 83.6~98.4% and 74.4~99.1%, respectively, in the application of scenario rainfall and actual rainfall.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparative study on urban waterlogging susceptibility assessment based on multiple data-driven models;Journal of Environmental Management;2024-06

2. Modeling and Assessing the Impact of Flash Floods on a Power Distribution System;2024 IEEE 4th International Conference in Power Engineering Applications (ICPEA);2024-03-04

3. A study of road closure due to rainfall and flood zone based on logistic regression;International Journal of Disaster Risk Reduction;2024-02

4. Loss functions for spatial wildfire applications;Environmental Modelling & Software;2024-02

5. Learning inter-annual flood loss risk models from historical flood insurance claims;Journal of Environmental Management;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3