Abstract
This study investigated the hydrogen embrittlement (HE) characteristics of advanced high-strength steels (AHSSs). Two different types of AHSSs with a tensile strength of 1.2 GPa were investigated. Slow strain rate tests (SSRTs) were performed under various applied potentials (Eapp) to identify the mechanism with the greatest effect on the embrittlement of the specimens. The SSRT results revealed that, as the Eapp increased, the elongation tended to increase, even when a potential exceeding the corrosion potential was applied. Both types of AHSSs exhibited embrittled fracture behavior that was dominated by HE. The fractured SSRT specimens were subjected to a thermal desorption spectroscopy analysis, revealing that diffusible hydrogen was trapped mainly at the grain boundaries and dislocations (i.e., reversible hydrogen-trapping sites). The micro-analysis results revealed that the poor HE resistance of the specimens was attributed to the more reversible hydrogen-trapping sites.
Funder
POSCO
National Research Foundation of Korea
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献