An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain

Author:

Sun TengORCID,Qin Lidu,Xie Yiji,Zheng ZhanguangORCID,Xie Changji,Huang Zeng

Abstract

In this paper, a low-cycle-fatigue (LCF) crack initiation life prediction approach that explicitly distinguishes nucleation and small crack propagation regimes is presented for ultrafine-grained (UFG) aluminum alloy by introducing two fatigue indicator parameters (FIPs) at the grain level. These two characterization parameters, the deformation inhomogeneity measured by the standard deviation of the dot product of normal stress and longitudinal strain and the microscale multiaxial strain considering the non-proportional cyclic additional hardening and mean strain effect, were proposed and respectively regarded as the driving forces for fatigue nucleation and small crack propagation. Then, the nucleation and small crack propagation lives were predicted by correlating these FIPs with statistical variables and cyclic J-integrals, respectively. By constructing a microstructure-based 3D polycrystalline finite element model with a free surface, a crystal plasticity finite element-based numerical simulation was carried out to quantify FIPs and clarify the role of crystallographic anisotropy in fatigue crack initiation. The numerical results reveal the following: (1) Nucleation is prone to occur on the surface of a material as a result of it having a higher inhomogeneous deformation than the interior of the material. (2) Compared with the experimental data, the LCF initiation life of UFG 6061 aluminum alloy could be predicted using the new parameters as FIPs. (3) The predicted results confirm the importance of considering the fatigue behavior of nucleation and small crack propagation with different deformation mechanisms for improving the fatigue crack initiation life prediction accuracy.

Funder

Natural Science Foundation of Guangxi Province of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3