Mts1 (S100A4) and Its Peptide Demonstrate Cytotoxic Activity in Complex with Tag7 (PGLYRP1) Peptide

Author:

Yurkina Daria M.1ORCID,Romanova Elena A.1,Shcherbakov Kirill A.2,Ziganshin Rustam H.3,Yashin Denis V.1,Sashchenko Lidia P.1

Affiliation:

1. Institute of Gene Biology (RAS), Moscow 119334, Russia

2. Institute of Biomedical Chemistry, Pogodinskaya Street 10, Moscow 119121, Russia

3. Shemyakin & Ovchinnikov Institute of Bioorganic, Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia

Abstract

Receptors of cytokines are major regulators of the immune response. In this work, we have discovered two new ligands that can activate the TNFR1 (tumor necrosis factor receptor 1) receptor. Earlier, we found that the peptide of the Tag (PGLYRP1) protein designated 17.1 can interact with the TNFR1 receptor. Here, we have found that the Mts1 (S100A4) protein interacts with this peptide with a high affinity (Kd = 1.28 × 10−8 M), and that this complex is cytotoxic to cancer cells that have the TNFR1 receptor on their surface. This complex induces both apoptosis and necroptosis in cancer cells with the involvement of mitochondria and lysosomes in cell death signal transduction. Moreover, we have succeeded in locating the Mts1 fragment that is responsible for protein–peptide interaction, which highly specifically interacts with the Tag7 protein (Kd = 2.96 nM). The isolated Mts1 peptide M7 also forms a complex with 17.1, and this peptide–peptide complex also induces the TNFR1 receptor-dependent cell death. Molecular docking and molecular dynamics experiments show the amino acids involved in peptide binding and that may be used for peptidomimetics’ development. Thus, two new cytotoxic complexes were created that were able to induce the death of tumor cells via the TNFR1 receptor. These results may be used in therapy for both cancer and autoimmune diseases.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3