Pathogenesis-Related 1 (PR1) Protein Family Genes Involved in Sugarcane Responses to Ustilago scitaminea Stress

Author:

Javed Talha12,Wang Wenzhi12ORCID,Sun Tingting12,Shen Linbo12,Feng Xiaoyan1,Huang Jiayan3,Zhang Shuzhen12

Affiliation:

1. National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

2. Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China

3. School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China

Abstract

Plant resistance against biotic stressors is significantly influenced by pathogenesis-related 1 (PR1) proteins. This study examines the systematic identification and characterization of PR1 family genes in sugarcane (Saccharum spontaneum Np-X) and the transcript expression of selected genes in two sugarcane cultivars (ROC22 and Zhongtang3) in response to Ustilago scitaminea pathogen infection. A total of 18 SsnpPR1 genes were identified at the whole-genome level and further categorized into four groups. Notably, tandem and segmental duplication occurrences were detected in one and five SsnpPR1 gene pairs, respectively. The SsnpPR1 genes exhibited diverse physio-chemical attributes and variations in introns/exons and conserved motifs. Notably, four SsnpPR1 (SsnpPR1.02/05/09/19) proteins displayed a strong protein–protein interaction network. The transcript expression of three SsnpPR1 (SsnpPR1.04/06/09) genes was upregulated by 1.2–2.6 folds in the resistant cultivar (Zhongtang3) but downregulated in the susceptible cultivar (ROC22) across different time points as compared to the control in response to pathogen infection. Additionally, SsnpPR1.11 was specifically upregulated by 1.2–3.5 folds at 24–72 h post inoculation (hpi) in ROC22, suggesting that this gene may play an important negative regulatory role in defense responses to pathogen infection. The genetic improvement of sugarcane can be facilitated by our results, which also establish the basis for additional functional characterization of SsnpPR1 genes in response to pathogenic stress.

Funder

project of National Key Laboratory for Tropical Crop Breeding

Central Public-interest Scientific Institution Basal Research Fund for the Chinese Academy of Tropical Agricultural Sciences

Hainan Provincial Natural Science Foundation of China

Earmarked Fund for the China Agriculture Research System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3