Affiliation:
1. College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
Abstract
Rice (Oryza sativa) is a cereal crop with a starchy endosperm. Starch is composed of amylose and amylopectin. Amylose content (AC) is the principal determinant of rice quality, but varieties with similar ACs can still vary substantially in their quality. In this study, we analyzed the total AC (TAC) and its constituent fractions, the hot water-soluble amylose content (SAC) and hot water-insoluble amylose content (IAC), in two sets of related chromosome segment substitution lines of rice with a common genetic background grown in two years. We searched for quantitative trait loci (QTLs) associated with SAC, IAC, and TAC and identified one common QTL (qSAC–6, qIAC–6, and qTAC–6) on chromosome 6. Map-based cloning revealed that the gene underlying the trait associated with this common QTL is Waxy (Wx). An analysis of the colors of soluble and insoluble starch–iodine complexes and their λmax values (wavelengths at the positions of their peak absorbance values) as well as gel permeation chromatography revealed that Wx is responsible for the biosynthesis of amylose, comprising a large proportion of the soluble fractions of the SAC. Wx is also involved in the biosynthesis of long chains of amylopectin, comprising the hot water-insoluble fractions of the IAC. These findings highlight the pleiotropic effects of Wx on the SAC and IAC. This pleiotropy indicates that these traits have a positive genetic correlation. Therefore, further studies of rice quality should use rice varieties with the same Wx genotype to eliminate the pleiotropic effects of this gene, allowing the independent relationship between the SAC or IAC and rice quality to be elucidated through a multiple correlation analysis. These findings are applicable to other valuable cereal crops as well.
Funder
Key Research and Development Program of Zhejiang province