Mechanisms Underlying the Effects of Chloroquine on Red Blood Cells Metabolism

Author:

Russo Annamaria1,Patanè Giuseppe Tancredi2,Putaggio Stefano2,Lombardo Giovanni Enrico3ORCID,Ficarra Silvana2,Barreca Davide2ORCID,Giunta Elena4,Tellone Ester2ORCID,Laganà Giuseppina2

Affiliation:

1. Istituto Comprensivo Primo, 98057 Milazzo, Italy

2. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy

3. Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy

4. Virology and Microbiology AOOR Papardo-Piemonte, 98166 Messina, Italy

Abstract

Chloroquine (CQ) is a 4-aminoquinoline derivative largely employed in the management of malaria. CQ treatment exploits the drug’s ability to cross the erythrocyte membrane, inhibiting heme polymerase in malarial trophozoites. Accumulation of CQ prevents the conversion of heme to hemozoin, causing its toxic buildup, thus blocking the survival of Plasmodium parasites. Recently, it has been reported that CQ is able to exert antiviral properties, mainly against HIV and SARS-CoV-2. This renewed interest in CQ treatment has led to the development of new studies which aim to explore its side effects and long-term outcome. Our study focuses on the effects of CQ in non-parasitized red blood cells (RBCs), investigating hemoglobin (Hb) functionality, the anion exchanger 1 (AE1) or band 3 protein, caspase 3 and protein tyrosine phosphatase 1B (PTP-1B) activity, intra and extracellular ATP levels, and the oxidative state of RBCs. Interestingly, CQ influences the functionality of both Hb and AE1, the main RBC proteins, affecting the properties of Hb oxygen affinity by shifting the conformational structure of the molecule towards the R state. The influence of CQ on AE1 flux leads to a rate variation of anion exchange, which begins at a concentration of 2.5 μM and reaches its maximum effect at 20 µM. Moreover, a significant decrease in intra and extracellular ATP levels was observed in RBCs pre-treated with 10 µM CQ vs. erythrocytes under normal conditions. This effect is related to the PTP-1B activity which is reduced in RBCs incubated with CQ. Despite these metabolic alterations to RBCs caused by exposure to CQ, no signs of variations in oxidative state or caspase 3 activation were recorded. Our results highlight the antithetical effects of CQ on the functionality and metabolism of RBCs, and encourage the development of new research to better understand the multiple potentiality of the drug.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3