Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data

Author:

Lee Yih-Der,Jiang Jheng-Lun,Ho Yuan-Hsiang,Lin Wei-Chen,Chih Hsin-ChingORCID,Huang Wei-TzerORCID

Abstract

An increase in the neutral current results in a malfunction of the low energy over current (LCO) protective relay and raises the neutral-to-ground voltage in three-phase, four-wire radial distribution feeders. Thus, the key point for mitigating its effect is to keep the current under a specific level. The most common approach for reducing the neutral current caused by the inherent imbalance of distribution feeders is to rearrange the phase connection between the distribution transformers and the load tapped-off points by using the metaheuristics algorithms. However, the primary task is to obtain the effective load data for phase rearrangement; otherwise, the outcomes would not be worthy of practical application. In this paper, the effective load data can be received from the feeder terminal unit (FTU) installed along the feeder of Taipower. The net load data consisting of customers’ power consumption and the power generation of distributed energy resources (DERs) were measured and transmitted to the feeder dispatch control center (FDCC). This paper proposes a method of establishing the equivalent full-scale net load model based on FTU data format, and the long short-term memory (LSTM) was adopted for monthly load forecasting. Furthermore, the full-scale net load model was built by the monthly per hour load data. Next, the particle swarm optimization (PSO) algorithm was applied to rearrange the phase connection of the distribution transformers with the aim of minimizing the neutral current. The outcomes of this paper are helpful for the optimal setting of the limit current of the LCO relay and to avoid its malfunction. Furthermore, the proposed method can also improve the three-phase imbalance of distribution feeders, thus reducing extra power loss and increasing the operating efficiency of three-phase induction motors.

Funder

Institute of Nuclear Energy Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3