Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study

Author:

Abdallah Ramez,Juaidi AdelORCID,Assad Mahmoud,Salameh Tareq,Manzano-Agugliaro FranciscoORCID

Abstract

The first industrial-scale pyrolysis plant for solid tire wastes has been installed in Jenin, northern of the West Bank in Palestine, to dispose of the enormous solid tire wastes in the north of West Bank. The disposable process is an environmentally friendly process and it converts tires into useful products, which could reduce the fuel crisis in Palestine. The gravimetric analysis of tire waste pyrolysis products from the pyrolysis plant working at the optimum conditions is: tire pyrolysis oil (TPO): 45%, pyrolysis carbon black (PCB): 35%, pyrolysis gas (Pyro-Gas): 10% and steel wire: 10%. These results are depending on the tire type and size. It has been found that the produced pyrolysis oil has a High Heating Value (HHV), with a range of 42 − 43   ( MJ / kg ) , which could make it useful as a replacement for conventional liquid fuels. The main disadvantage of using the TPO as fuel is its strong acrid smell and its low flash point, as compared with the other conventional liquid fuels. The produced pyrolysis carbon black also has a High Heating Value (HHV) of about 29 (MJ/kg), which could also encourage its usage as a solid fuel. Carbon black could also be used as activated carbon, printers’ ink, etc. The pyrolysis gas (Pyro-Gas) obtained from waste tires mainly consist of light hydrocarbons. The concentration of H2 has a range of 30% to 40% in volume and it has a high calorific value (approximately 31   MJ / m 3 ), which can meet the process requirement of energy. On the other hand, it is necessary to clean gas before the burning process to remove H2S from Pyro-Gas, and hence, reduce the acid rain problem. However, for the current plant, some recommendations should be followed for more comfortable operation and safer environment work conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. Can waste plastics and tires be recycled economically;Huffman;Chemtech,1998

2. Review of waste tire reuse and recycling in China –current situation, problems and countermeasures;Wang;Adv. Nat. Sci.,2013

3. Amer EL-Hamouz. The Development of National Mangle Plan for Hazardous Waste Management for Palestinian National Authorityhttp://environment.pna.ps/ar/files/Part_one_Final_Report_on_The_Development_of_a_National_Master_Plan_for_Hazardous_Waste_Management_for_the_Palestinian_National_Authority_en.pdf

4. Thermal Recycling of Solid Tire Wastes for Alternative Liquid Fuel: The First Commercial Step in Bangladesh

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3