Hot Corrosion Behavior of Inconel 625 in Na2SO4 and V2O5 Molten Salt System

Author:

Li Liang1,Li Lanfeng12,Zhang Guofeng1,Xue Hongdi1,Cui Maomao1,Wang Wenxu1,Liu Dexue13

Affiliation:

1. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. Lanzhou LS Group Co., Ltd., Casting ang Forging Branch, Lanzhou 730314, China

3. State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

This study aimed to examine the corrosion behavior of Inconel 625 in a molten salt system of sodium sulfate and vanadium pentoxide at varying temperatures and durations. The corrosion products, microstructure, and element distribution of hot extruded Inconel in Na2SO4 and V2O5 molten salt systems were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) analyses. This study demonstrates that corrosion of the alloy increases with time at a constant temperature. During the initial stage of corrosion, the surface of the alloy is primarily composed of a dense oxide layer consisting of Cr2O3 and NiO. However, after exposure to the salt bath for 24 h, a chemical reaction occurs between the alloy and vanadium (V), resulting in the formation of CrVO4 and Ni3V2O8. Furthermore, the intrusion of sulfur (S) element into the matrix leads to the formation of internal sulfides, including Ni-, Cr-, and Mo-based sulfides, which accelerate intergranular and intracrystalline corrosion. As the corrosion temperature rises, the surface microstructure of the corrosion layer transforms from powder to salt particles and then to massive particles. The corrosion products exhibit a clear stratification, while the alloy undergoes simultaneous oxidation and vulcanization processes.

Funder

the National Natural Science Foundation of China

Key Talent Projects of Gansu Province

Gansu Basic Research Innovation Group Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3