Relationship between Structure and Properties of Intermetallic Materials Based on γ-TiAl Hardened In Situ with Ti3Al

Author:

Avdeeva Varvara1ORCID,Bazhina Arina2,Antipov Mikhail2,Stolin Alexander2,Bazhin Pavel2ORCID

Affiliation:

1. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prospekt 31, 119991 Moscow, Russia

2. Merzhanov Institute of Structural Macrokinetics and Materials Sciences, Russian Academy of Sciences, Akademika Osipyana 8, Chernogolovka, 142432 Moscow, Russia

Abstract

In this work, intermetallic materials based on γ-TiAl in situ strengthened with the Ti3Al phase have been obtained from the initial components of titanium and aluminum under the conditions of free SHS-compression in one technological step and in ten seconds. This method combines the process of the combustion of initial components in the mode of self-propagating high-temperature synthesis (SHS) with high-temperature shear deformation of the synthesized materials. The following initial compositions have been studied (mol): Ti–Al, 1.5 Ti–Al, and 3 Ti–Al. Thermodynamic calculations have been carried out and the actual combustion temperature of the compositions under study has been measured. To increase the exothermicity of the studied compositions, a “chemical furnace” based on a mixture of Ti–C powders has been used, which allows us to increase the combustion temperature and stabilize the combustion front. It has been found that the actual combustion temperature of the selected compositions increased from 890–1120 to 1000–1350 °C. The results of X-ray powder diffraction and SEM are presented, mechanical and tribological characteristics of the obtained materials are measured, and 3D images of wear grooves are given. It has been found that a decrease in Ti molar fraction and an increase in Al molar fraction in the initial mixture lead to an increase in the mechanical (hardness up to 10.2 GPa, modulus of elasticity up to 215 GPa) and tribological characteristics (wear up to 4.5 times, coefficient of friction up to 2.4 times) of intermetallic materials.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3