Cutting Chatter in Ultrasonic Elliptical Vibration Cutting and Its Influence on Surface Roughness and Tool Wear

Author:

Li Gan1ORCID,Liu Jinbo1,Pan Yanan1ORCID,Bao Yan1ORCID,Yin Sen1,Dong Zhigang1ORCID,Kang Renke1

Affiliation:

1. State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China

Abstract

Ultrasonic elliptical vibration cutting has a wide range of applications in the field of precision cutting of difficult-to-machine metal materials. However, due to its intermittent cutting characteristics and the weak rigidity of the horn, cutting chatter is prone to occur during its cutting process, which has an important impact on cutting surface quality and tool wear. In this paper, the rigid/viscoplastic rod model is used to simulate the horn in the ultrasonic elliptical vibration cutting device, and the influence factors of the amplitude-frequency response of the horn are analyzed. The influence of cutting speed and cutting depth on cutting chatter was studied by ultrasonic elliptical vibration cutting experiment of tungsten heavy alloy, and the influence of cutting chatter on cutting surface morphology and diamond tool wear was studied. The research shows that cutting speed will change the excitation frequency of the horn, and reasonable cutting speed can inhibit the occurrence of cutting chatter and avoid resonance of the horn. The cutting depth will affect the excitation amplitude and amplify the vibration amplitude when chatter or resonance occurs. The experimental results show that in ultrasonic elliptical vibration cutting of heavy tungsten alloy, chatter suppression can significantly improve the quality of the cutting surface and reduce the wear of diamond tools.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

High Level Talents Innovation Plan of Dalian

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference27 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3