Microstructure and Mechanical Properties of TC4 Titanium Alloy at the Temperature of 77K

Author:

Zhao Yuetao12,Li Xuewen1,Fang Wenbin2

Affiliation:

1. Key Laboratory for Light-Weight Materials, Nanjing University of Technology, Nanjing 210003, China

2. School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China

Abstract

Titanium alloy has the advantages of low thermal conductivity, a small expansion coefficient and being non-magnetic, making it an ideal low-temperature structural material. In this paper, the typical TC4 titanium alloy in industrial titanium alloy is selected as the research object. The microstructure deformation law and mechanical behavior of TC4 titanium alloy at liquid nitrogen temperature are mainly investigated, and compared with the microstructure and properties at room temperature. The macroscopic and microscopic deformation mechanism of the simultaneous increase in elongation and hardening index of titanium alloy at low temperature is revealed, which provides a basic basis for the low-temperature deformation mechanism and strengthening and toughening design of titanium alloy. Based on the uniaxial tensile tests at room temperature (298 K) and low temperature (77 K), the effects of low temperature on the yield strength, elongation, tensile strength and work hardening curve of titanium alloy were compared and analyzed. The strength/plasticity synergistic improvement of TC4 titanium alloy under low-temperature deformation was found. At low temperature, the yield strength, tensile strength and elongation of TC4 titanium alloy are improved compared with room temperature. The tensile strength increases from 847.93 MPa at 298 K to 1318.70 MPa at 77 K, and the elongation increases from 21.8% at 298 K to 24.9% at 77 K. The grain morphology, grain orientation, dislocation density and fracture morphology of titanium alloy under room temperature and low-temperature tensile conditions were studied by SEM and EBSD. The results of fracture morphology characterization at room temperature and low temperature show that TC4 titanium alloy exhibits ductile fracture characteristics and a large number of dimples are formed on the fracture surface. The dimple depth at low temperature is shallower than that at room temperature and the overall surface is more flat. Compared with room temperature deformation, the deformation process of TC4 titanium alloy in a low-temperature environment produces stronger dislocation pile-up and forms a large number of twins, but the grain rotation is more significant, which effectively alleviates the stress concentration and delays the initiation and propagation of cracks at grain boundaries.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3