Evaluating the Residual Life of Long-Term Equipment Made of Structural and Heat-Resistant Steel by Using the Structural–Mechanical Criterion

Author:

Ababkov Nikolay12ORCID,Smirnov Alexandr1,Danilov Vladimir3

Affiliation:

1. Department of Mechanical Engineering Technology, T. F. Gorbachev Kuzbass State Technical University, 650000 Kemerovo, Russia

2. The Federal Research Center of Coal and Coal-Chemistry SB RAS, 18 Sovetsky Avenue, 650065 Kemerovo, Russia

3. Strength Physics Laboratory, Institute of Strength Physics and Materials Science SB RAS, 634055 Tomsk, Russia

Abstract

The use of acoustic and magnetic methods of non-destructive testing to detect zones of stable localization of deformation in order to assess and predict the performance of long-term equipment is of scientific and practical interest at present. A structural–mechanical criterion was developed that reflects the relationships between the structural and substructural states, internal stress fields and stable localization of deformations with the characteristics of non-destructive tests in the metal of long-term equipment made of structural 0.2 C steel and heat-resistant 0.12C-1Cr-1Mo-1V steel. The values of the structural–mechanical criteria Ks.-m for structural 0.2 C steel and for heat-resistant 0.12C-1Cr-1Mo-1V steel, corresponding to the moment of stable localization of deformation, are established. At the same time, it is recommended to replace the checked equipment nodes due to the exhaustion of the resource. The proposed and justified approach to assessing and predicting the performance and residual life of long-term power equipment, based on the identified relationships between the structural and substructural states, internal stress fields and stable localization of deformations with the characteristics of non-destructive tests and the calculation of the structural–mechanical criterion, was applied at a number of power plants in the Kemerovo region—Kuzbass. A methodology was developed for evaluating the residual life, based on the identification and use of relationships between structural and substructural states, internal stress fields and stable localization of deformations with the characteristics of non-destructive tests and the calculation of a structural–mechanical criterion.

Funder

Russian Science Foundation

Government research assignment for ISPMS SB RAS

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3