A Predictive Damage-Tolerant Approach for Fatigue Life Estimation of Additive Manufactured Metal Materials

Author:

Psihoyos Harry1,Lampeas George1

Affiliation:

1. Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering & Aeronautics, University of Patras, 26504 Rion, Greece

Abstract

Metal Additive Manufacturing (AM) allows the fabrication of intricate shaped parts that cannot be produced with conventional manufacturing techniques. Despite the advantages of this novel manufacturing technology, the main drawback is the inferior fatigue performance of AM metal materials and parts due to the presence of process-induced defects that act as initial cracks. Reliable fatigue modeling methods that can assist the design and characterization of AM components must be developed. In this work, a computational damage-tolerance framework for the fatigue analysis of the AM metals and parts is presented. First, thermal modeling of the AM process for the part fabrication is performed to predict the susceptible areas for defect formation in the parts. From the processing of results, the characteristics of the critical defect are determined and used as input in a fracture mechanics-based model for the prediction of fatigue life of AM metals and parts. For validation purposes, the framework is utilized for the fatigue modeling and analysis of AM Ti-6Al-4V and 316L SS metals of relative experimental test cases found in the literature. The predicted results exhibit good correlation with the available experimental data, demonstrating the predictive capability of the modeling procedure.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3