Electrochemical Corrosion Behavior of Ti-N-O Modified Layer on the TC4 Titanium Alloy Prepared by Hollow Cathodic Plasma Source Oxynitriding

Author:

Yan Jiwen1,Shao Minghao2,Zhou Zelong1,Zhang Zhehao3,Yi Xuening1,Wang Mingjia1,Wang Chengxu1,Fang Dazhen3,Wang Mufan1,Xie Bing2,He Yongyong3,Li Yang1ORCID

Affiliation:

1. School of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China

2. School of Electromechanical Automobile Engineering, Yantai University, Yantai 264005, China

3. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

Abstract

TC4 alloy is widely used in dental implantation due to its excellent biocompatibility and low density. However, it is necessary to further improve the corrosion resistance and surface hardness of the titanium alloy to prevent surface damage that could result in the release of metal ions into the oral cavity, potentially affecting oral health. In this study, Ti-N-O layers were fabricated on the surface of TC4 alloy using a two-step hollow cathode plasma source oxynitriding technique. This resulted in the formation of TiN, Ti2N, TiO2, and nitrogen-stabilized α(N)-Ti phases on the TC4 alloy, forming a Ti-N-O modified layer. The microhardness of the samples treated with plasma oxynitriding (PNO) was found to be 300–400% higher than that of untreated (UN) samples. The experimental conditions were set at 520 °C, and the corrosion current density of the PNO sample was measured to be 7.65 × 10−8 A/cm2, which is two orders of magnitude lower than that of the UN sample. This indicates that the PNO-treated TC4 alloy exhibited significantly improved corrosion resistance in the artificial saliva solutions.

Funder

National Natural Science Foundation of China

Shandong Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3