Influence of the C Content on the Fatigue Crack Initiation and Short Crack Behavior of Cu Alloyed Steels

Author:

Görzen David1,Blinn Bastian1,Beck Tilmann1

Affiliation:

1. Institute of Materials Science and Engineering, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany

Abstract

The mechanical properties of Cu alloyed steels are influenced significantly by the Cu content and the respective state of Cu precipitations as well as the C content. In this context, the effect of an increased C content on the fatigue crack initiation and growth of differently aged Cu alloyed steels with 0.005 (X0.5CuNi2-2: X0.5) and 0.21 wt.-% C (X21CuNi2-2: X21) was investigated in this study. Notched specimens were examined via SEM in interrupted fatigue tests to detect the location of crack initiation and growth. The results showed that fatigue crack initiation and growth occurred for both steels at grain boundaries, and within ferrite grains. However, a higher C content increased the incidence of crack initiation and growth at grain boundaries. This is caused by the smaller grains of X21 and especially by the presence of cementite on the grain boundaries. This explains why, in contrast to X0.5, no influence of the Cu precipitation state on the defect-based failure was observed for X21, as the precipitates are located within the ferrite grains and, thus, only have a minor impact on the fatigue failure mechanisms of X21.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3