Microstructure Refinement and Work-Hardening Behaviors of NiAl Alloy Prepared by Combustion Synthesis and Hot Pressing Technique

Author:

Hu Jia-Yu1,Zhang Shuang2,Zhang Long-Jiang3,Peng Fan3,Zhao Hai-Long1,Qiu Feng1ORCID

Affiliation:

1. Key Laboratory of Automobile Materials, Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025, China

2. School of Mechanical and Aerospace Engineering, Jilin University, Renmin Street No. 5988, Changchun 130025, China

3. Kocel Intelligent Machinery Limited, Yinchuan 750021, China

Abstract

Most methods used to synthesize and prepare NiAl intermetallics and their alloys have the disadvantages of complexity and high cost. In this paper, the NiAl alloy was prepared by a Combustion Synthesis and Hot Pressing (CSHP) technique under rapid solidification. The grain size of the NiAl alloy is significantly refined to 60–80 μm, which reduces the stress concentration during deformation and improves the fracture strength and fracture hardness. Moreover, the large internal stress and greater amount of dislocations in the as-cast microstructure are produced by their formation under pressure due to the fast cooling rate in the solidification process. The high dislocation density strengthens the NiAl alloy, giving it higher strength, hardness, and work-hardening ability. The high compression properties are also present in the NiAl intermetallics at room temperature, in which the fracture strength is around 1005 MPa and the fracture strain reaches 21.6%. The compressive fracture strength at room temperature is higher than that of the pure NiAl alloy prepared by the Hot-Pressing-Aided Exothermic Synthesis (HPES, about 632 MPa), while it is slightly lower than that of pure NiAl alloy treated by HPES and Hot Isostatic Pressing (HIP, 1050 MPa). The fracture strain is significantly higher than that of the NiAl alloy prepared by other methods. This study can provide guidance for the successful preparation of the NiAl alloy with high strength and toughness.

Funder

Innovation Fund of Jilin University, China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3