First-Principles Study of Oxygen in ω-Zr

Author:

Chen Yonghao1,Liu Zhixiao1ORCID,Wang Dong2ORCID,Zhao Yi2ORCID

Affiliation:

1. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

2. Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China

Abstract

Zirconium alloys, which are widely used as cladding materials in nuclear reactors, are prone to react with oxygen (O). Furthermore, the ω-Zr in zirconium alloys can significantly increase the strength and hardness of these alloys, but there is a lack of reports on the behavior of oxygen in ω-Zr in the current literature. To investigate their interactions, we have studied the behavior of O in ω-Zr using the first-principles approach. In this work, we examined the effects of vacancy and alloying elements (Nb, Sn) on the behavior of O in ω-Zr. The results show that O with a formation energy of −5.96 eV preferentially occupies an octahedral interstitial position in ω-Zr. A vacancy reduces the formation energy of O in a tetrahedral interstitial position in ω-Zr. Nb and Sn decrease the formation energy of O in the octahedral interstitial position by 6.16 eV and 5.08 eV. Vacancy effectively reduces the diffusion barrier of O around it, which facilitates the diffusion of O in ω-Zr. Nb and Sn preferentially occupy the 1b and 2d substitution sites in ω-Zr, respectively. Nb makes the diffusion barrier of O in ω-Zr lower and promotes the diffusion of O in ω-Zr. Moreover, Sn makes the diffusion of O around Sn difficult. It was further found that O is less prone to form clusters in ω-Zr and tends to independently occupy interstitial positions in ω-Zr. In particular, a single vacancy would make the binding energy between O atoms to be further reduced.

Funder

Fund of Science and Technology on Reactor Fuel and Materials Laboratory

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3