Evaluation of Mechanical and Permeability Characteristics of Microfiber-Reinforced Recycled Aggregate Concrete with Different Potential Waste Mineral Admixtures

Author:

Alyousef RayedORCID,Ali BabarORCID,Mohammed AhmedORCID,Kurda RawazORCID,Alabduljabbar Hisham,Riaz Sobia

Abstract

Plain recycled aggregate concrete (RAC) struggles with issues of inferior mechanical strength and durability compared to equivalent natural aggregate concrete (NAC). The durability issues of RAC can be resolved by using mineral admixtures. In addition, the tensile strength deficiency of RAC can be supplemented with fiber reinforcement. In this study, the performance of RAC was evaluated with individual and combined incorporation of microfibers (i.e., glass fibers) and various potential waste mineral admixtures (steel slag, coal fly ash (class F), rice husk ash, and microsilica). The performance of RAC mixtures with fibers and minerals was appraised based on the results of mechanical and permeability-related durability properties. The results showed that generally, all mineral admixtures improved the efficiency of the microfibers in enhancing the mechanical performance of RAC. Notably, synergistic effects were observed in the splitting tensile and flexural strength of RAC due to the combined action of mineral admixtures and fibers. Microsilica and rice husk ash showed superior performance compared to other minerals in the mechanical properties of fiber-reinforced RAC, whereas slag and fly ash incorporation showed superior performance compared to silica fume and husk ash in the workability and chloride penetration resistance of RAC. The combined incorporation of microsilica and glass fibers can produce RAC that is notably stronger and more durable than conventional NAC.

Publisher

MDPI AG

Subject

General Materials Science

Reference83 articles.

1. Global Construction Aggregates—Demand and Sales Forecasts, Market Share, Market Size, Market Leaders,2016

2. Environmental impacts of mining natural aggregate;Langer,2002

3. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review

4. Annual Research Report on the Development of Urban 637 Environmental and Sanitation Industry in China: 2015–2016;Tai,2017

5. Dynamic characterization of full-scale structures made with recycled coarse aggregates

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3