Theoretical Evaluation of Water Cloud Model Vegetation Parameters

Author:

Park ,Jung ,Cho ,Moon ,Han

Abstract

The advantage of implementing the Water Cloud Model (WCM) is in being able to express complex scattering characteristics in a vegetated area with simple bulk vegetation descriptors. However, there has been a lack of understanding or consensus about the optimal set of vegetation descriptors. In this paper, the original and improved expressions of WCM are evaluated and the optimal vegetation descriptors are presented by examining the relationship between WCM vegetation parameters and the theoretical scattering model predictions. In addition, the condition-specific regression relationship between bulk vegetation descriptors and theoretical scattering and attenuation coefficients, expressed by the A and B parameters in the WCM, is analyzed in relation to the shape, size, and orientation distribution of the scatterer. Furthermore, the influence of radar observation conditions on the parameterization of the WCM is presented. The results show that the particle moisture content and the vegetation water content can be the optimal vegetation descriptors, denoted by the V1 and V2 variables in the WCM, respectively.

Funder

Hanwha Systems Corporation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3