Author:
Penzkofer Alfons,Silapetere Arita,Hegemann Peter
Abstract
The retinal photocycle dynamics of the fluorescent voltage sensor QuasAr1 (Archaerhodopsin 3 P60S-T80S-D95H-D106H-F161V mutant from Halorubrum sodomense) in pH 8 Tris buffer was studied. The samples were photoexcited to the first absorption band of the protonated retinal Schiff base (PRSB) Ret_580 (absorption maximum at λmax ≈ 580 nm), and the retinal Schiff base photoisomerization and protonation state changes were followed by absorption spectra recordings during light exposure and after light exposure. Ret_580 turned out to be composed of two protonated retinal Schiff base isomers, namely Ret_580I and Ret_580II. Photoexcitation of Ret_580I resulted in barrier-involved isomerization to Ret_540 (quantum yield ≈ 0.056) and subsequent retinal proton release leading to Ret_410 deprotonated retinal Schiff base (RSB). In the dark, Ret_410 partially recovered to Ret_580I and partially stabilized to irreversible Ret_400 due to apoprotein restructuring (Ret_410 lifetime ≈ 2 h). Photoexcitation of Ret_580II resulted in barrier-involved isomerization to Ret_640 (quantum yield ≈ 0.00135) and subsequent deprotonation to Ret_370 (RSB). In the dark, Ret_370 partially recovered to Ret_580II and partially stabilized to irreversible Ret_350 due to apoprotein restructuring (Ret_370 lifetime ≈ 10 h). Photocycle schemes and reaction coordinate diagrams for Ret_580I and Ret_580II were developed and photocyle parameters were determined.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献