Abstract
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most destructive wheat disease and a major problem for the productivity of wheat in the world. To obtain a better understanding about different effects of redox homeostasis and photosystem (PS) to Pst infection in wheat, we investigated the differences in photosynthesis and the antioxidant defense system in wheat cultivar Chuanmai42 (CM42) in response to two Chinese Pst races known as CYR32 and V26. The results showed that V26-infected wheat accumulated a higher reactive oxygen species (ROS), cell death, and energy dissipation than CYR32-infected wheat when compared with the control. Furthermore, we found that the activities of three antioxidant enzymes (APX, GR, and GPX) and four resistance-related enzymes in CYR32-infected wheat were significantly higher than that in V26-infected wheat. In addition, quantitative RT-PCR indicated that the expression levels of two genes associated with resistant stripe rust in CYR32-infected wheat were clearly higher than that in V26-infected wheat. Compared with CYR32-infected wheat, lower photochemical efficiencies were observed in V26-infected wheat at the adult stage. Meanwhile, only a marked decline in D1 protein was observed in V26-infected wheat. We therefore deduced that wheat with stripe rust resistance could maintain high resistance and photosynthetic capacity by regulating the antioxidant system, disease-resistant related enzymes and genes, and the levels of PSII reaction center proteins.
Funder
Sichuan Science and Technology Program
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献