Ion-Based Cellular Signal Transmission, Principles of Minimum Information Loss, and Evolution by Natural Selection

Author:

Frieden B. Roy,Gatenby Robert

Abstract

The Extreme Physical Information EPI principle states that maximum information transmission or, equivalently, a minimum information loss is a fundamental property of nature. Prior work has demonstrated the universal EPI principle allows derivation of nearly all physical laws. Here, we investigate whether EPI can similarly give rise to the fundamental law of life: Evolution. Living systems require information to survive and proliferate. Heritable information in the genome encodes the structure and function of cellular macromolecules but this information remains fixed over time. In contrast, a cell must rapidly and continuously access, analyze, and respond to a wide range of continuously changing spatial and temporal information in the environment. We propose these two information dynamics are linked because the genes encode the structure of the macromolecules that form information conduits necessary for the dynamical interactions with the external environment. However, because the genome does not have the capacity to precisely locate the time and location of external signals, we propose the cell membrane is the site at which most external information is received and processed. In our model, an external signal is detected by gates on transmembrane ion channel and transmitted into the cytoplasm through ions that flow along pre-existing concentration gradients when the gate opens. The resulting cytoplasmic ion “puff” is localized in both time and space, thus producing spatial and temporal information. Small, localized signals in the cytoplasm are “processed” through alterations in the function and location of peripheral membrane proteins. Larger perturbations produce prolonged or spatially extensive changes in cytoplasmic ion concentrations that can be transmitted to other organelles via ion flows along elements of the cytoskeleton. An evolutionary constraint to the ever-increasing acquisition of environmental information is the cost of doing so. One solution to this trade-off is the evolution of information conduits that minimize signal loss during transmission. Since the structures of these conduits are encoded in the genome, evolution of macromolecular conduits that minimize signal loss is linked to and, in fact, governed by a universal principle, termed extreme physical information (EPI). Mathematical analysis of information dynamics based on the flow of ions through membrane channels and along wire-like cytoskeleton macromolecules fulfills the EPI principle. Thus, the empirically derived model of evolution by natural selection, although uniquely applicable to living systems, is theoretically grounded in a universal principle that can also be used to derive the laws of physics. Finally, if minimization of signal loss is a mechanism to overcome energy constraints, the model predicts increasing information and associated complexity are closely linked to increased efficiency of energy production or improved substrate acquisition.

Funder

National Cancer Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3