The Number of Platelets in Patient’s Blood Influences the Mechanical and Morphological Properties of PRP-Clot and Lysophosphatidic Acid Quantity in PRP

Author:

Bosetti MichelaORCID,Boffano Paolo,Marchetti Alice,Leigheb Massimiliano,Colli Mattia,Brucoli Matteo

Abstract

The objectives of this study were to compare platelet-rich plasma (PRP) from patients with different concentrations of platelets and to assess the influence of these PRP preparations on human osteoblast (hOB) activity. In the literature, growth factors released by activated platelets have been considered responsible for the active role of PRP on bone regeneration but no specific role has been attributed to lysophosphatidic acid (LPA) as a possible effector of biological responses. In this study, patients were grouped into either group A (poor in platelets) or group B (rich in platelets). Clots from PRP fraction 2 (F2-clots), obtained with CaCl2 activation of PRP from the two groups, were compared macroscopically and microscopically and for their mechanical properties before testing their activity on the proliferation and migration of hOB. LPA was quantified before and after PRP fractioning and activation. The fibrin network of F2-clots from patients with a lower platelet concentration had an organized structure with large and distinct fibers while F2-clots from patients in group B revealed a similar structure to those in group A but with a slight increase in density. ELISA results showed a significantly higher plasma level of LPA in patients with a higher platelet concentration (group B) in comparison to those in group A (p < 0.05). This different concentration was evidenced in PRP but not in the clots. Depending on the number of platelets in patient’s blood, a PRP-clot with higher or lower mechanical properties can be obtained. The higher level of LPA in PRP from patients richer in platelets should be considered as responsible for the higher hOB activity in bone regeneration.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference46 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3