Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering

Author:

Udomluck Nopphadol,Koh Won-Gun,Lim Dong-Jin,Park Hansoo

Abstract

Bone tissue engineering is an alternative therapeutic intervention to repair or regenerate lost bone. This technique requires three essential components: stem cells that can differentiate into bone cells, growth factors that stimulate cell behavior for bone formation, and scaffolds that mimic the extracellular matrix. Among the various kinds of scaffolds, highly porous nanofibrous scaffolds are a potential candidate for supporting cell functions, such as adhesion, delivering growth factors, and forming new tissue. Various fabricating techniques for nanofibrous scaffolds have been investigated, including electrospinning, multi-axial electrospinning, and melt writing electrospinning. Although electrospun fiber fabrication has been possible for a decade, these fibers have gained attention in tissue regeneration owing to the possibility of further modifications of their chemical, biological, and mechanical properties. Recent reports suggest that post-modification after spinning make it possible to modify a nanofiber’s chemical and physical characteristics for regenerating specific target tissues. The objectives of this review are to describe the details of recently developed fabrication and post-modification techniques and discuss the advanced applications and impact of the integrated system of nanofiber-based scaffolds in the field of bone tissue engineering. This review highlights the importance of nanofibrous scaffolds for bone tissue engineering.

Funder

Korea Health Industry Development Institute

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing diabetic wound healing: advances in electrospun scaffolds from pathogenesis to therapeutic applications;Frontiers in Bioengineering and Biotechnology;2024-02-05

2. Biomimetic thymoquinone incorporated nanofibrous matrix as periosteum substitute to promote bone healing;Materials Letters;2024-02

3. Poly(methyl methacrylate) in Orthopedics: Strategies, Challenges, and Prospects in Bone Tissue Engineering;Polymers;2024-01-29

4. Nanofiber Composites for Packaging Applications;Applications of Biopolymers in Science, Biotechnology, and Engineering;2024-01-20

5. Electrospun Materials;Sustainable Materials for Electrochemical Capacitors;2023-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3