Abstract
High-resolution satellite images such as KOMPSAT-3 data provide detailed geospatial information over interest areas that are evenly located in an inaccessible area. The high-resolution satellite cameras are designed with a long focal length and a narrow field of view to increase spatial resolution. Thus, images show relatively narrow swath widths (10–15 km) compared to dozens or hundreds of kilometers in mid-/low-resolution satellite data. Therefore, users often face obstacles to orthorectify and mosaic a bundle of delivered images to create a complete image map. With a single mosaicked image at the sensor level delivered only with radiometric correction, users can process and manage simplified data more efficiently. Thus, we propose sensor-level mosaicking to generate a seamless image product with geometric accuracy to meet mapping requirements. Among adjacent image data with some overlaps, one image is the reference, whereas the others are projected using the sensor model information with shuttle radar topography mission. In the overlapped area, the geometric discrepancy between the data is modeled in spline along the image line based on image matching with outlier removals. The new sensor model information for the mosaicked image is generated by extending that of the reference image. Three strips of KOMPSAT-3 data were tested for the experiment. The data showed that irregular image discrepancies between the adjacent data were observed along the image line. This indicated that the proposed method successfully identified and removed these discrepancies. Additionally, sensor modeling information of the resulted mosaic could be improved by using the averaging effects of input data.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献