A Novel Hybrid Path Planning Method Based on Q-Learning and Neural Network for Robot Arm

Author:

Abdi AliORCID,Adhikari Dibash,Park Ju HongORCID

Abstract

Path planning for robot arms to reach a target and avoid obstacles has had a crucial role in manufacturing automation. Although many path planning algorithms, including RRT, APF, PRM, and RL-based, have been presented, they have many problems: a time-consuming process, high computational costs, slowness, non-optimal paths, irregular paths, failure to find a path, and complexity. Scholars have tried to address some of these issues. However, those methods still suffer from slowness and complexity. In order to address these two limitations, this paper presents a new hybrid path planning method that contains two separate parts: action-finding (active approach) and angle-finding (passive approach). In the active phase, the Q-learning algorithm is used to find a sequence of simple actions, including up, down, left, and right, to reach the target cell in a gridded workspace. In the passive phase, the joints angles of the robot arm, with respect to the found actions, are obtained by the trained neural network. The simulation and test results show that this hybrid approach significantly improves the slowness and complexity due to using the simplified agent-environment interaction in the active phase and simple computing the joints angles in the passive phase.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3