Abstract
This works concerns the characterization and the evaluation of adsorption capability of innovative porous materials synthesized by using alginates and different industrial by-products: silica fume and bottom ash. Hydrogen peroxide was used as pore former to generate a porosity able to trap particulate matter (PM). These new materials are compared with the reference recently proposed porous SUNSPACE hybrid material, which was obtained in a similar process, by using silica fume. Structural, morphological, colorimetric and porosimetric analyses were performed to evaluate the differences between the obtained SUNSPACE typologies. The sustainability of the proposed materials was evaluated in terms of the Embodied Energy and Carbon Footprint to quantify the benefits of industrial by-products reuse. Adsorption tests were also performed to compare the ability of samples to trap PM. For this aim, titania suspension, with particles size about 300 nm, was used to simulate PM in the nanoparticle range. The results show that the material realized with bottom ash has the best performance.
Funder
Ministero dell'Ambiente e della Tutela del Territorio e del Mare
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献